BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 44, 2256 (1971)

The SCF MO Calculation of the g Value for the H₂NO Radical

Tetsuo Morikawa, Osamu Kikuchi, and Kazuo Someno*

Department of Chemistry, Tokyo Kyoiku University, Otsuka, Tokyo

* Government Chemical Industrial Research Institute, Tokyo, Shibuya-ku, Tokyo

(Received September 21, 1970)

In our previous papers,¹⁾ an approximate open shell SCF MO method with the CNDO approximation²⁾ was proposed and applied to quantitative discussions of the electronic structure and ESR parameters of the aliphatic nitric oxide radicals. The results on the g tensor of the H_2NO radical showed that the value of g_{yy} , the principal value of g along the N-O bond, was somewhat unsatisfactory. The present note will show that improved results for the g_{yy} of the H_2NO radical can be obtained by a modification of the evaluation of electron repulsion integrals or bonding parameters.

The principal values of the g tensor for the H_2NO radical, as calculated by Stone's formula, 3) are listed in Table 1. The results are those obtained by the SCF MO CNDO or INDO 5) approximation, where the values of bonding parameters given in the original papers of Pople and Segal 2) were used. 6) A better agreement with the experimental data was obtained by both these calculation methods than the previous onc. The value of g_{yy} could be especially improved by the INDO calculation. This is because of the increase in the excitation energy from the non-bonding orbital of the oxygen atom to the odd-orbital and the decrease in spin density on the oxygen atom.

Table 1. Principal values of g tensor for H₂NO

	INDOa)	CNDO/2a)	CNDO/2b)	Exp.c)
g_{xx}	2.0045	2.0047	2.0050	2.0061
g_{yy}	2.0091	2.0104	2.0113	2.0089
g_{zz}	2.0023	2.0023	2.0023	2.0027
g_{av} .	2.0053	2.0058	2.0062	2.0059

- a) Bonding parameters used are those in Ref. 2.
- b) Results in Ref. 1.
- c) Values for di-t-butyl nitric oxide in Ref. 4.
- 1) O. Kikuchi, This Bulletin, 42, 47, 1187 (1969).
- 2) J. A. Pople and G. A. Segal, J. Chem. Phys., 43, S129, S136 (1965).
 - 3) A. J. Stone, Proc. Roy. Soc., Ser. A, 271, 424 (1963).
- 4) O. H. Griffith, D. W. Cornell, and H. M. McConnell, *J. Chem. Phys.*, **43**, 2909 (1965).
- 5) J. A. Pople, D. L. Beveridge, and P. A. Dobosh, *ibid.*, **47**, 2026 (1967).
- 6) In our previous CNDO calculations, the values of the bonding parameters were adjusted empirically and were different from those of Pople and Segal.

The dependence of the g tensor on the molecular geometry of the radical is a subject of importance in the present theoretical study. The g_{yy} of the H₂NO radical is very sensitive to the variation in the N-O bond length and the HNH bond angle, but the g_{yy} is not. The value of g_{yy} obtained by the INDO calculation, for example, changes from 2.0083(1.20 Å) to 2.0119(1.30 Å) at the fixed HNH angle of 120°. This comes from the fact that the oxygen lone-pair orbital, which makes a large contribution to g_{yy} , is very sensitive to these changes in molecular geometry. The theoretical estimation of g tensors must, therefore, be carried out on the basis of a careful examination of the molecular geometry of a radical. For the H₂NO radical, the CNDO or the INDO method gives the minimum energy near the assumed structure of this radical, shown in Fig. 1. As was pointed out by Segal,⁷⁾ the CNDO method leads to some success in the evaluation of the equilibrium bond length. Therefore, the present results on the g tensor for the radical assuming the structure are acceptable.

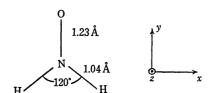


Fig. 1. Assumed stucture of H₂NO.

It may be concluded that the original CNDO/2 and INDO parametrizations give good theoretical results on the g value for the aliphatic nitric oxide radical. However, ambiguity still remains as to the applicability of these methods to other radicals. We have, though, applied the methods to several σ -type radicals and observed that the calculated principal values of the g-tensors of these σ -type radicals show good agreement with the experimental values. Therefore, the theoretical investigation described here may be applicable to the estimation of g values of all other radicals.

⁷⁾ G. A. Segal, *ibid.*, **47**, 1876 (1967).

⁸⁾ T. Morikawa, O. Kikuchi, and K. Someno, to be published.